TP solutions électrolytiques et les concentrations

Solide ionique

Le chlorure de sodium cristallise dans un système cubique faces centrées (F) de paramètre de maille a=564pm. est formé d'ions Na + et Cl -.

Sa masse volumique est de $\rho = 2,165 \text{ g.cm}^{-3}$

Les rayons de ses constituants sont :

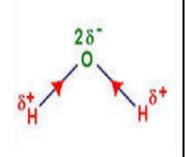
 $r_{Na}^{+} = 99 \text{ pm}$ $r_{Cl}^{-} = 181 \text{ pm}$

1- Determiner les positions occupées par chacun des ions Na + et Cl- sous cette forme.

2. Comment interprété la distribution organiser et éac'ac'bs('rt-cohérente de ces ions?

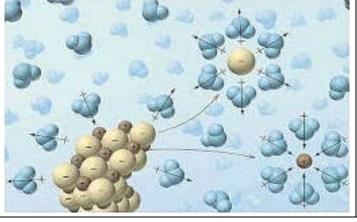
3. La neutralité électrique est réalisée dans le cristal de chlorure de sodium?

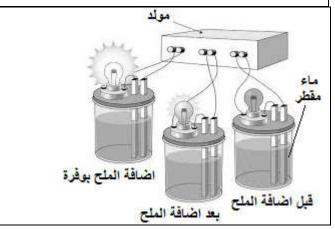
4. Donner la formule chimique pour le chlorure de sodium.


La polarité de la molécule d'eau H₂O

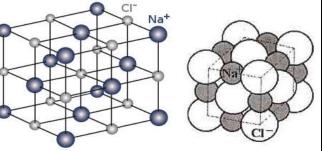
L'atome d'oxygène est plus électronégatif que l'atome d'hydrogène : il attire donc plus vers lui les électrons des deux liaisons covalentes qu'il forme avec les atomes d'hydrogène dans la molécule d'eau.

Pour tester la polarité de l'eau, on rempli un burette avec l'eau et on frotte un règle de plastique à l'aide de la laine. On observe que le filet d'eau est attiré par la règle, Que peut déduire a partir de cette observation


- **1-** Quelle est la géométrie d'une molécule d'eau?
- 2- Déterminer le barycentre des charges positives et celui des charges négatives
- 3- La molécule d'eau est elle polaire



Propriété d'une solution électrolytique


- 1. Réaliser le montage qui permet de mesurer l'intensité I du courant électrique traversant les différentes solutions. (voir document)
- 2. Préparer les solutions dans un bécher en dissolvant une spatulée de solide dans de l'eau distillée. Verser la solution dans la cuve à électrolyse, y ajouter de l'eau distillée si nécessaire.
- 3. Refaire le schéma et compléter le tableau.

Nom de la solution	Mesure de I en A (ou intensité de lampe)
eau	
Solution de chlorure de sodium	
Solution de chlorure de sodium saturé	

- 4. Comment procéder pour savoir si la solution obtenue contient des ions ?
- 5. Faire l'expérience qui permet de confirmer éventuellement en faisant des tests d'ion.
- 6. Interpréter l'intensité de chaque lampe dans les trois expériences
- 7. Ecrire l'équation de dissolution

Mise en solution d'un gaz : le chlorure d'hydrogène Expérience du jet d'eau

- 5. Ecrire l'équation de dissolution.

Mise en solution d'un liquide : dissolution de l'acide sulfurique

Introduire avec précaution 2mL d'acide sulfurique concentré dans un bécher contenant environ 75 mL d'eau distillée.

- 1. Comment procéder pour savoir si la solution obtenue contient des ions ?
- 2. Faire l'expérience.
- 3. Confirmer éventuellement en faisant des tests d'ion.
- 4. Ecrire l'équation de dissolution